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Abstract

We extend the mean-field Gaussian chain theory, originally developed for non-dilute solutions of athermal polymer chains in a slit, to
solutions in a channel with a square cross section. The formulation allows one to calculate the monomer density profile, the chemical
potential of the confined polymer chain, and therefore the partition coefficient. For the mean-field potential, we used the first-order
approximation that neglects local monomer density fluctuations and the second-order approximation that takes into account the fluctuations.
The results of the density profile and the partition coefficient were compared with those obtained in the lattice Monte Carlo simulations. The
theoretical results obtained with the first-order approximation agreed well with the simulation results for chains of 100 beads below the
average monomer density of ca. 0.2. At higher concentrations, the second-order results gave a better agreement. This cross over indicates a
change in the interactions between polymer chains from those in one-dimension to those in three-dimensions as the correlation length in the

confined solution becomes sufficiently shorter than the channel width. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Theoretical formulation for polymer chains in non-dilute
solutions in a confining geometry had been limited to the
scaling theory [1,2] until the Landau—Ginzburg free energy
functional approach was taken by Brazhnik et al. [3].
Recently Teraoka and Wang [4] formulated the thermo-
dynamics of an athermal polymer solution confined to a
slit using a mean-field Gaussian chain theory. The mean-
field potential in which a chain with a Gaussian con-
formation grows was determined so that, in the absence of
the confinement, the Green function for the chain repro-
duces the dependence of the osmotic pressure on the poly-
mer concentration for the bulk solutions obtained in the
renormalization group theory [5,6]. We employed two
levels of approximation for the mean-field potential. The
first-order potential was obtained for a uniform monomer
density in the bulk solution, and the second-order potential
was calculated by taking into account the fluctuations in the
local monomer density. Within the slit, the potential was
defined at every point as a function of the mean local mono-
mer density at that point. To account for the difference in the
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confinement entropy between the athermal chains and Gaus-
sian chains, a Gaussian-equivalent radius of gyration R,g
was introduced; The Gaussian chain of Ry and the real
chain of R, have the same confinement entropy in the slit.
The formulation, applied to the Gaussian chain of Rg,
allowed calculation of the monomer density profile, the
chain dimension across the slit, the chemical potential of
the polymer chain, and therefore the partition coefficient.
Use of the second-order mean-field potential achieved a
good agreement between the theoretical prediction and the
simulation results, especially in the monomer density profile
and the partition coefficient [4]. Subsequently, we extended
the theoretical formulation to the non-dilute polymer solu-
tions in the theta condition confined to a slit [7]. The missing
second virial coefficient made the weak-to-strong transition
occur at much higher concentrations compared with the
good solvent condition.

We recently studied the thermodynamics of polymer
chains confined to a channel of a square cross section
using lattice Monte Carlo simulations [8]. The concentration
ranged from dilute to semidilute. At low concentrations, the
partition coefficient K in the channel was close to, but
slightly smaller than, the square of the partition coefficient
K in the slit of the same wall-to-wall distance d. In the
semidilute solution, whether the relationship K = K?
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holds compared at the same concentration in the surround-
ing solution equilibrated with the confined solutions was
different between the weak confinement (the radius of
gyration < d) and the strong confinement. In the weak
confinement, K = Ks2 holds in the whole concentration
range. In the strong confinement, K < K? in the semidilute
solution (the concentration refers to the one in the surround-
ing solution), but K = K2 when the correlation length was
sufficiently smaller than d.

The present work extends the theory [4] for the confined
non-dilute athermal chains to the channel geometry. Now
the confinement is in two directions. Except in the low
concentration limit, the Green function is not independent
between the two directions even for the mean-field Gaussian
chain. We solve the problem by expanding the Green func-
tion in terms of two-dimensional eigenfunctions. A stronger
confinement by the channel brings about a more prominent
change in the thermodynamics compared with the slit
geometry. We compare the theoretical results with those
obtained in our lattice Monte Carlo simulations. The
comparison will show that the partition coefficient and the
density profile in the channel sensitively reflect the inter-
actions between polymer chains.

2. Mean-field Gaussian chain theory

2.1. Review of Green function formulation for a single chain
confined to a square channel

First, we review a Green function formulation for a single
Gaussian chain [2,9]. The chain consists of N segments of
length b. The Green function G(r, r’; n), which is equal to
the probability density of finding the nth segment at r when
the Oth segment is at r’, satisfies the following equation:

[9/on — (B*16)V* + U)IG(r,x';n) = 8r — r")8(n) (1)

where 0 =n = N and U(r) is the potential energy reduced
by thermal energy kg7. When U = 0, it is explicitly given
as:

Go(r,r';n) = Qmnb*/3) "% exp[—3(r — r')?/(2nb»)] ()

For a single Gaussian chain trapped in a channel of square
cross section of d X d, i.e. Ur)=U(x,y) =0 (0 <x,y <
d) and oo (otherwise), the x and y components of the Green
function are mutually independent. The z component does
not change. The x component changes to

Gox(x, x's1) = " ugr(x)ugr(x )exp(—ney) 3)
k=1

where the normalized eigenfunctions

ug(x) = 2/d)"? sintkmxid) (k= 1,2,...) )
and the eigenvalues
eor = (P 16)(kmild)* 6))

satisfy the eigenequation:
[—(B*16)d%/dx® + U)luge(x) = enpton(x) ©)

The y component G, (y, y'; n) experiences the same change.

The partition coefficient is defined as the ratio of the
polymer concentration in the channel to that in the bulk
solution when the two solutions are equilibrated with each
other. The coefficient K, in the dilute solution limit is
obtained as the probability of growing the whole chain with-
out touching the channel walls starting at an arbitrary point
within the channel. Integration of Gy, (x,x'; N)Goy(y,y'; N)
with respect to x and y and then averaging with respect to x’
and y’ gives K|, as:

2
8 & _
K, = [? >k’ exp(—NeOk)-I

k:odd

. 2
- [% >k exp[—(kﬂ'RgO/d)z]:I (7
k:odd

where Réo = Nb*/6 is the mean square radius of gyration in
the dilute bulk solution. In the low concentration limit, the
partition coefficient with the channel of a cross section d” is
equal to the square of the partition coefficient with the slit of
width d. As in the slit geometry, the confinement entropy,
—kgln K, in the channel is determined by R,(/d only, where
kg is the Boltzmann constant. It is twice as large as that in
the slit.

2.2. Many-chain system confined to a square channel

In the square channel, the monomer density is high at the
center and trails off toward the walls and the corners. We pay
attention to the z-averaged Green function ny(x, M X, y/; n)
defined as G, (x,y;x',y"sn) = [ dz G(r,x'; n). It satisfies

o b * .
I:% - F(W + a7 + U, y) |Gyx,y;5x7,y'5n)

= 8(x — x)8(y — y)d(n) ®)

We employ the mean-field potential U(x,y)=
N Jfm((x,y)), where the monomer density ¢(x,y) deter-
mines U(x,y) in 0 < x,y < d and U(x,y) = o otherwise.

The solution of Eq. (8) can be expressed just as Gy, in
Eq. (3) as:

G, y:x',y'sm) = > uy(e, yuy(x',y)exp(—ney)  (9)
k=1

where the eigenfunction uy,(x,y) is expressed by a Fourier
series:

ug(e,y) = > agiug@ue(y)  I1=1,2,...)  (10)

ij=1

with ay; being the superposition coefficients. When f;, = 0
(at (b = 0), aklij = 6ki61j and € = EOk + EOI Wlth 61:]' being
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the Kronecker’s delta. Then ny(x, y;x’, y'; n) reduces to
Gox(x,x';m)Goy (v, y's ).
The eigenequation is now represented in the matrix form:

May,; = (Neyay (11)

where ay is the transpose of [ay;q,d12....], and the
elements of M are given as:

M = N(E()i + €0j)8ii’6

iji'j ]]/ + U i3l

iji'j (i,j,i,,j/: 1,2,)

(12)

where

d d
Uy = L jo oty ) (e, Yty Wity (D dy (13)

Symmetricity of ¢(x,y) with respect to x, y = d/2 leads to
Uyjpjp = 01if i and i’ have a different parity or j and j' have a
different parity. Then from Egs. (11) and (12), we find that
ay; = 0 if k and i have a different parity or / and j have a
different parity. The matrix form of the eigenequation can
be solved separately for (k,/) = (odd, odd), (odd, even),
(even, odd), and (even, even). The eigenequation for
(k,]) = (odd, odd) needs to be solved self-consistently,
because ¢(x) is determined by ay; of odd k and [ as
shown below. The other eigenequations can be solved
once ¢(x) is determined.

The monomer density profile ¢(x,y) at (x,y) is propor-
tional to the probability of growing two partial chains of
lengths n and N —n from (x,y) in the given potential
field, averaged with respect to n. It is expressed as:

d d d d N
d(x,y) Ep71¢AVJ' dx/J dx//J dy/J dy”NﬂJ dn
0 0 0 0 0
X G,y x, ;N = m)Gy(x,y;x",y"in),  (14)

where ¢y =d? | a ) 4 p(x,y)dx dy is the average density
in the channel. The normalization requires p ' with p being
the insertion probability of the whole chain in the channel:

d d d d
p= d72 J‘() dx/ J‘() dx// 4[0 dy/ '[O dy”ny(xl,y/;.x”,y//;N)

=87 D byexp(—Ney) (15)
k,l:0dd
and
bu= > () ay (16)
ij:odd

In the dilute solution limit, b;; = 1/(kl) and therefore p =
K,. At finite concentrations, however, the insertion prob-
ability is smaller than unity in the bulk solution as well,
and therefore p is not equal to the partition coefficient any
more.

In terms of ay;;, ¢(x,y) is expressed as:

b(x,y)
8d \?
- v (%) Sty (ot (Vo )
p Jm:odd j'.m':0dd
(17)
where
Cimjlm' = Z brGigjm Z by i €y (18)
klodd K 0dd
with
exp(_Nekl) (k’ l) = (k/’ ll)

k'’ = 7 exp(—Neyy) — exp(—Ney)

k1) #= (k'
N(ey — &) D= &0

19)

To implement the eigenequation into a computer program,
the dual index (k,I) in Eq. (11) was coded into a one-
dimensional index. Now M is a regular two-dimensional
matrix and ay a vector. Other equations also benefit from
this encoding. The Appendix A explains details of the
computation method.

2.3. Mean-field potentials, unperturbed eigenvalues, and
chemical potentials

For the mean-field potential f;,, we employ the first- and
second-order approximations. The two potential functions
fn1 and f;, are respectively given as [4]:

]
fr($) = P() — 1 + JO [P(e) — 11¢™" dop (20)
Fun($) = fun () + Infcoshh(d)] @1
with
h(d) = i1 ({APT)AP(T,)) (22)

where the prime denotes the derivative. The first-order
approximation assumes a uniform monomer density
throughout the system to derive the potential function.
The second-order approximation takes into account the
pair correlation in the local monomer density fluctuations,
(A (r))Ad(ry)). The average is taken with respect to the
ensemble and ry, r,. Note that f,,(¢) > fi.i(¢) at all ¢.

For the osmotic compressibility P(¢), we employ the
Ohta—Oono semiempirical formula [5,6]:

P(p) =1+ %X exp{0.3089[X ' + (1 — X HIn(1 + X)1}
(23)

with X = 3.49¢/¢". Here ¢* is the overlap monomer
density defined by (],’)*(2”2ng0)3 = Na’, where a® is the
monomer volume. We evaluate (A¢(r))A¢d(r,)) for bulk
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solution of the average monomer density ¢. See Ref. [4] for
details.

For the one-dimensional unperturbed eigenvalues €, we
employ the values obtained for an athermal chain in the slit
geometry. We also take into account the chain contraction
and concomitant decrease in the confinement entropy. As
we did for the confinement by the slit, we introduce a Gaus-
sian-equivalent radius of gyration R,g so that the Gaussian
chain with R, and the athermal chain with R, experience
the same confinement entropy [10]. With Ry, €y given as:

Ney, = (kmRyg/d) (24)

enters Eq. (12). We allow chain contraction and employ the
contraction factor R,/R,, found for unconfined solutions as
we did in the slit geometry [10].

The chemical potential u; of the confined chain is cal-
culated from the insertion probability (Eq. (15)). In the
first-order approximation,

8 \2
(= p)/kgT = In ay — ln((?> > b eXP(—kal))

k,l:odd
(25)
where w° is the chemical potential at some reference state,

and ¢ ,v is the average monomer density in the channel. In
the second-order approximation [4],

(m — ) kgT

=1n ¢py — 111((;) > by GXP(_N'EM))
k

Jl:odd

— In(cos(h(¢))) (26)

where we evaluate /() at the center of the channel. The last
term accounts for second-order correction to u due to the
density fluctuations. The chemical potential wg of the chain
in the bulk solution at concentration ¢ is given as, common
to the two approximations,

(ug — w)kgT

be
—Indh + P(he) — 1 + jo Po) - e do  27)

Equating u; to ug gives the partition coefficient K =
Pav/ P

The eigenequation (Eq. (11)) is solved self-consistently.
Thus, the confined solution system is specified by Rg/d and

G av/dp” only.

3. Simulation method

Monte Carlo simulation was performed on a cubic lattice.
Details of the simulation method is explained elsewhere [8].
Briefly, chains with N =100 and 500 monomers were
generated. Their radii of gyration in the dilute bulk solution

are 6.524 and 16.78, respectively, where the unit length is
the lattice spacing. Their overlap monomer densities are
0.1164 and 0.0361, respectively. The monomer density
profile was obtained in a simulation box consisting of a
channel space only. The size of the box was L, X L, X 150,
where L, = L, was varied. A periodic boundary condition
was applied in the z direction. The walls are at x = 0, x =
L.+ 1,y=0,andy = L, + 1. The channel width is dg, =
L, + 1 in the simulation. The density ¢(x,y) is defined as
the average of the ratio of the occupied sites to the available
sites at (x,y). The partition coefficient was evaluated in
another simulation box that consists of the channel space
and the surrounding free space connected to the channel
through its mouths. The box size was L, X L, X 50 for the
channel and 50 X 50 X 50 for the exterior space. Chains
were moved according to the reptation moves and the
Metropolis rule. Typically trial moves as many as 4 X 10'°
were needed to obtain a smooth profile. The computing was
done on a super computer.

We take a few precautions [4] to compare the simulation
results obtained for a channel with a cross section of dg;;, X
dg, and the theoretical results obtained for a channel of
dXd in the continuum. First, the simulation data are
obtained at discrete points on the lattice only, and the aver-
age density ¢avgm 1S calculated for these points. For
comparison, the theory calculates the density at the coordi-
nates of the lattice points. The partition coefficient Ky, is
thus obtained as Ky, = ¢aysim/Pe. The exterior solution
does not need this correction. Second, the monomer density
near the wall in the lattice simulation slightly deviates from
the scaling-law prediction, ¢(x) ~ x" with v = 0.59 [11-
13]. To coerce the scaling law, we need to add a positive
constant y to x: ¢p(x) ~ (x + )" [14]. In effect, monomers
perceive the theoretical wall somewhat behind the physical
wall sitting on the lattice points. Our detailed simulation
study [15] estimated y = 0.13 at low concentrations in a
weak confinement and y = (.36 in the semidilute solutions.
We employ y = 0.36 throughout this article.

4. Calculation results

In this section, we will show the results obtained with
Sfm2(¢) only. The difference between f,;(¢b) and f;n(d) will
be discussed when we compare the calculation results with
the simulation results.

Fig. 1 shows the leading eigenvalues Ne;; (1 =i<j=35;
i, j: odd) of Eq. (11) as a function of ¢ ,v/¢”. Results for a
weak confinement (Rg/d = 0.1) and a strong confinement
(Rgo/d = 0.5) are shown. At low concentrations, the inter-
actions are absent, and the matrix in the eigenequation is
diagonal. Its diagonal elements (7'ngG/d)2(i2 + j%) are the
eigenvalues. In the figure, Ne;, Ne3;, Nes;, Nes;, Ness,
and Ness in the low concentration limit are proportional to
2, 10, 18, 26, 34, and 50, respectively. The two sets for
Ry/d = 0.1 and 0.5 are evenly displaced by about 33,
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Fig. 1. Leading eigenvalues Ne;;, Ne3;, Nes, Nes;, Nesz, and Ness (from
bottom to top) plotted as a function of ¢,v/¢ . Results for a weak confine-
ment (Ry/d = 0.1; solid lines) and a strong confinement (Ry/d = 0.5;
dotted lines) are shown.

close to (0.5/0.1)% The small difference is due to the adop-
tion of the Gaussian equivalent radius to give an appropriate
confinement entropy to an excluded-volume chain. With an
increasing ¢ayv/¢p”, the eigenvalues with lower indices
climb, whereas the eigenvalues with higher indices are
held more or less unchanged, erasing the difference between
Ne ;. Eventually, Ne;; of different indices increase in unison.
In the stronger confinement, a higher ¢ ,v is needed for the
eigenvalues to start to increase, because the interactions are
the smaller part of the matrix elements until ¢,y becomes
comparable to ¢*. We see a decrease in Nes;, Nes;, Ness,
and Ness at v/ < 1, ascribed to the chain contraction
that decreases (ngG/d)z(iZ + jz). The trends are similar to
those we observed in the slit geometry [4].

Examples of the two-dimensional density profile ¢(x,y)
are shown in Fig. 2 for Ry/d = 0.5. Three parts of the figure
were obtained at ¢ v/ = (a) 0.1, (b) 1, and (c) 5.275. In
(a), the density profile is dominated by the ground state

(k=1=1; i=j=1), sin’(mx/d)sin’(wy/d). The density
falls off toward zero at the walls as x* near the wall of x =
0, for instance. The depletion at the walls becomes smaller
with an increasing ¢ ,v. In (¢), the profile has a plateau at the
center.

Fig. 3 shows the partition coefficient K as a function of
¢e/d”, the monomer density ¢y in the surrounding solution
reduced by ¢”. The plot is given for different chain dimen-
sions, Ry/d. As in the slit, K exhibits a diffuse transition
from a weak penetration to a strong penetration with an
increasing ¢/ ", although it is less diffuse and requires a
higher ¢g/¢” in the channel than in the slit [4]. The transi-
tion requires a higher ¢g/¢” for more strongly confined
chains.

We now take another look at the same data. In Fig. 4, we
plot K as a function of ¢ for a given channel width d. For
this purpose, we use the definition of ¢, qb*RgO = Na’.
Because N = (Ry/a)"' = (Ry/a)" ™, g~ (Pe/d")
(Reo/d)""" "> = (de/ ") (Ryo/d) """ is used for the abscissa.
It is obvious that, with an increasing chain length, the plot
approaches an asymptotic curve (not shown) that rises
sharply from zero at around (¢g/ qﬁ*)(RgO/d)fl'305 =2.
Plots for different chain lengths overlap with the asymptotic
curve at high concentrations. Apparently, the partitioning at
high concentrations does not depend on the chain length, but
is determined by ¢ only. This fact substantiates the view
that the partitioning of the semidilute solution is based on
the blob size (= correlation length) relative to the channel
width [16], just as the partitioning of the dilute solution is
governed by Ry/d.

As discussed in our preceding article on simulations [8],
the partition coefficient K of polymer chains with a channel
follows roughly the square of the partition coefficient Kg of
the same chains with a slit of the same wall-to-wall distance
d, compared at the same ¢g, when the confinement is weak.
We compare K (solid lines) with Ké (dashed lines) for
Ryo/d = 0.2,0.5,and 1 in Fig. 5. We used fi»(¢) to calculate
Kj. In the low concentration limit, K = K%, because confine-
ment of the Gaussian chain is independent in each direction
in the absence of interactions. With an increasing ¢pg, the
solid line runs away from the dashed line. The discrepancy

iy

B oy
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l'l ‘!.‘:
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i/

Fig. 2. Two-dimensional density profiles obtained for Ry/d = 0.5. (a) Pay/d” = 0.1; (b) pay/d" = 1; (c) Ppay/d” = 5.275. The density is reduced by ¢*.
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between K and K3 is more serious in the stronger confine-
. ment, especially when the correlation length ¢ in the exter-
ior solution is not sufficiently small compared with d. Until
g & becomes sufficiently smaller than d, entrance into the
channel is much more difficult compared with entrance
into the slit. At higher concentrations, closeness of K to
K52 is regained, as & becomes sufficiently short. A similar
trend was observed in our previous simulation studies [8].
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Fig. 3. Partition coefficient K plotted as a function of ¢/¢ " in the surround-
ing solution. The value of Ryy/d is indicated adjacent to each curve.

5. Comparison with simulation results

It is not easy to visually compare the two-dimensional
density profile ¢(x,y) between theory and simulation.
Therefore, we select line profiles at two longitudinal

0.6 T T T T T T
| | 05 L B B amceECETEEPEREPEPESEEE s _
0.8 | =
4 - -
L 01 ///// i _ 0
0.6 - - % 031 iR
g
L 4 ASS /
K ,0,2/ 0.2+ ,:' e cecwmneceno e —
04 7
L / 4 0.1 4 A\
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02 | _ — 0 L ] . ] . 1 . | 1
i 04575 5 i 0 0.2 0.4 0.6 0.8 1
0 e IIJ_A—-LP.71 1'1 Lo L x/d
0.1 1 10 100
(/%) R/ 1305
Fig. 4. Partition coefficient K plotted as a function of ¢g ~ (¢Ppg/¢p *)(Rgo/ =
d)”"?%, See text for definition of the quantity on the abscissa. The chain \%
dimension is indicated next to each curve. <
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Fig. 5. Partition coefficient for chains of Ry, with a square channel (solid
line) is compared with the square of the partition coefficient with a slit of the
same wall-to-wall distance d (dashed line). Three chain dimensions,

Rgold = 0.2, 0.5, and 1, are compared.

Fig. 6. Comparison of the density profile ¢q(x) along the midplanes of
the channel. The dots are from simulation for N = 100, the solid lines
are from the theory with f;,, and the dashed lines with f,;. (a) dg, = 20,
bavsim = 0.1385, 0.277, 0.4737 from bottom to top. (b) dg, =12,
bavsim = 0.08264, 0.16528, 0.24792, 0.3306, 0.4132. (¢) dgy =8,
bavsim = 0.0408, 0.1224, 0.2449, and 0.3677. The lines were obtained
for Ryy/dsim = (a) 0.3262, (b) 0.5437, and (c) 0.8155.
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Fig. 7. Comparison of the density profile ¢ i,,(x) along the diagonal planes
of the channel. The data were obtained for the same sets as those in Fig. 6.

cross sections of the channel. One is ¢;q(x) = [P(x, d/2) +
&(d/2,x)]/2, the density along the midplanes of the channel.
The other i gipe(x) = [P(x,x) + P(x,d — x)]/2 along the
diagonal planes. Fig. 6(a), (b) and (c) compares ¢ pq(x)
for the chains of N = 100 in a channel of d, = 20, 12,
and 8, respectively, at several values of ¢ sy sim. Calculations
were done for ¢* = 0.1164 and Ryo/dgm = 0.3262, 0.5437,
and 0.8155, respectively. Fig. 7(a), (b) and (c) compares
@ iag(x) for the same confined solutions. The solid lines
were obtained with f,(¢) and the dashed lines with
fmi1(®). The profiles obtained in the simulations, shown as
dots, are the averages of the profiles at x and d — x.

The two profiles are a one-dimensional cut of the two-
dimensional profile. There may be a systematic deviation
between the two theoretical profiles and the simulation
profile. For instance, ¢nig(x) for dgy, = 12 at dpygm =
0.08264 has more points of simulation data above the
solid line than those below the curve. The imbalance can
occur because there are more points that have the same x
near the wall than there are near the center.

The two profiles are approximately related by

d’diag(x)/(bpeak = [¢mid(x)/¢peak]29 where ¢peak is the density
at the center of the channel cross section [8]. As a result, the
depletion layer in ¢ () is 60 to 70% thicker than the one
in ¢pigx).

For the three channel widths, the simulation data are close
to the dashed lines at ¢y sm < 0.2, but at higher ¢4y, the
solid lines run close to the simulation data. In d;,, = 8, the
dashed lines give a better fit except for the highest ¢ v gim-
Note that a strong potential spreads the monomer density
toward the walls at high concentrations, overcoming the
entropy penalty near the walls and thus thinning the deple-
tion layer. The comparison tells that the interactions of the
chains follow closely f,; until ¢,y becomes sufficiently
high. Recall that f;,, not f;,;, gave a good agreement with
the simulation profiles in the slit geometry in different
confinement strengths over a wide range of ¢,y [4]. We
consider the difference in the theory’s capability to predict
the simulation profiles between the slit and channel geo-
metries is meaningful and caused by the difference of inter-
actions in the two geometries. In solutions within the
channel, especially under strong confinement, the chains
are packed along the channel rather uniformly. The correla-
tion in the monomer density fluctuations is cut off at
distance d. In the slit, the correlation extends beyond d,
although it is weaker compared with the bulk solution.
Thus, the fluctuations in the monomer density in the channel
are smaller compared with the bulk solution or in the two-
dimensional slit geometry, especially at around ¢* of the
bulk solutions. Therefore, f;,; obtained by assuming a
uniform monomer density in the bulk describes rather
well the density profiles. As the correlation length in the
solution confined to the channel decreases to a value suffi-
ciently smaller than the channel width, the solution behaves
rather three-dimensionally. Then it becomes necessary to
take into account the local monomer density fluctuations,
and f;,(¢p) gives a better description of the confined solu-
tion.

Interestingly, the simulation profiles at higher concentra-
tions exhibit a caldera pattern with a shallow basin at the
center. It is more pronounced compared with the one
observed in the slit geometry [4]. The theoretical curves
reproduce the pattern to some extent (see Figs. 6(a) and
7(a)). The shallow basin at the center is due to suppression
of higher-order modes. The thinning of the depletion later at
the walls with an increasing ¢4y is made possible through
enhancement of the higher-order modes, but the remaining
depletion places a cap on the mode order and keeps the
modes with a higher order from growing. As a result, the
sharp rise in ¢(x, y) near the wall is accompanied by a slight
decline in ¢(x,y) in the hinterland.

The partition coefficient K, is compared in Fig. 8 for
N =100, dg,=20; N=100, dg, =8; and N = 500,
dgm = 8. The solid lines were obtained with f;,, and the
dashed lines with f;,;. The agreement and disagreement
between the theoretical curves and the simulation data are
parallel to those we have seen in the profiles plot. When the
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Fig. 8. Comparison of the partition coefficient K,, plotted as a function of
. Triangles, closed circles, and open circles were obtained in simulations
with N = 100, dg, = 20; N =100, dg, =8; and N = 500, dg, =8,
respectively. The lines (solid lines for f;,, and dashed lines for f;,;) are
from theory for Ryo/dgm = 0.3262, ¢" = 0.1164; Ryo/dy,, = 0.8155, ¢* =
0.1164; and Ryo/dg, = 2.098, ¢" = 0.0361.

confinement is weak, f;,; gives a good agreement with the
simulation data up to ¢y = 0.2. Beyond that ¢g, fip is
better. In the stronger confinement, the theory cannot
describe the simulation results except at around ¢g =
0.2-0.25 by fin. The discrepancy between theory and
simulation is greater in this plot compared with the profiles
plot. This comparison points to the sensitivity of the parti-
tion coefficient. The latter depends on a delicate balance of
the interaction with the confinement entropy.

A downward deviation of the theoretical K, at high
concentrations is evident, especially in the strong confine-
ment. Simulated chains find it much easier to enter the
channel compared with the theory at high concentrations.
The discrepancy may be due to the strong contraction of the
chains at higher concentrations in the narrow channel. The
latter will facilitate the entrance. In our calculation, we used
the three-dimensional chain contraction factor. It is an over-
estimate (chains in the channel do not contract as much)
below the overlap monomer density within the channel
that is about 0.10 in dg,, = 8 for both N = 100 and 500,
but is an underestimate when the chains are congested in the
channel.

There is a stepwise increase at ¢y = 0.21 in the solid line
for N =500, dgi, =8. The first-order transition-like
increase is due to the presence of two phases in the solution
of strongly confined chains. In a certain range of ¢y, a
dilute solution of extended chains and a semidilute solution
of contracted chains coexist. The two-phase regime is,
however, artificially caused by our assumption that chains
confined to a channel experience the same contraction as in
the unconfined solution. A single chain in a strong confine-
ment has already a high local concentration. Its monomer
density is N/(d°Ry)), where Ry is the dimension of the single
chain along the channel. The chain does not show contrac-
tion until ¢,y reaches N/(dzR”). Therefore, the simulation
results do not exhibit a stepwise increase in Kg,.

6. Conclusions

We have presented a mean-field Gaussian chain theory
for non-dilute polymer solutions confined to a square
channel. A good agreement with the simulation results
was obtained when the first- and second-order mean field
potentials were used at low and high concentrations, respec-
tively. A small difference in the partition coefficient
between theory and simulation indicates a need to study
the contraction of chains strongly confined to a narrow
channel. The investigation is currently under way.

The theory confirms the unique penetration transition
characteristic of narrow channels and long chains, which
is absent in slits. This transition may find its use in separa-
tion techniques for macromolecules such as high osmotic
pressure chromatography [17].

Extension of our theory to a cylindrical geometry will be
easy, because the monomer density depends only on the
radial distance from the cylinder axis even at high con-
centrations. The problem is essentially one-dimensional.
Computation will be fast even for weakly confined chains
that require many modes to follow the flat profile with
fidelity.
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Appendix A. Computation of eigenequation

To facilitate numerical solution of the eigenequation on
computer, we index the pair of mode numbers (k,/) into a
compound mode number L. We introduce L by L = k(k —
1)/2 + [ with k = [ =1 for odd k and I. Conversely, we can
restore (k, /) from L. When the upper limit of k is set to k.
incomputation, then | = L = L, = kp. (1 + ko )/2. It is
necessary to choose a sufficiently large k. to express the
detailed spatial variation of the monomer density in the
channel. Because €,; = €; and uy(x,y) = uy(y,x), Eq.
(A1) is written as:

G (x,y:x',y'sn)
Lmax
= > lug (o ur(x',y")
L=1

+ (1 = & up(y, Dug(y', x')]exp(—ne.) (A1)

Note that u,(x, y) with k > [ represents a higher-order mode
in the x direction compared with the y direction. Therefore,
ay; = 0 for k> 1 and i < j. Because the non-zero elements
of ay; are restricted to i = j, we can use another compound
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index I to represent (i, j) as I = i(i — 1)/2 + j for odd i, j.
The maximum of 7 is L. Eq. (A2) is now

Linax

ur(x,y) = Z aruo;(x)ig;(y)
=

(L=1,2,....L) (A2)

The eigenequation now looks familiar:

Ma; = (Ney)a, (A3)
The two-dimensional matrix M is of size Ly, X Lyax:

My = N(€y; + €)0 + Uy (1, .. Linay) (Ad)

with

d rd
Uy = jo jo o (. Yty (g () dy  (AS)

where I’ represents (i’, j').
The insertion probability p is now

d d d d
p= d*2 J'O dx/ 4[0 dx// JO dy/ JO dy”ny(xl,y/;x”,y”;N)

Lmax
= (8/7)" > bj(2 — dy)exp(—Ney) (A6)
L=1
where
Lmax
b= (i) 'ay (A7)
=1

The density profile is now

bav (ﬁ)ﬂix e

d’(X,y): 7 7T2

Cjy [MOj(X)MOm o)
J=1 J'=1

+ (1 - Sjm)u()m(x)u()j(y)] X [MOj’(x)MOm’(y)

+ (1 - 6j’m’)MOm’(-)C)MOj’(y)] (Ag)

where ¢, is symmetric:

Linax Linax
= Z bray, Z bpapyery (A9)
L=1 L'=1
with
exp(—Nep) L=1"L
err =9 exp(—Ney) — exp(—Ne;) Ll (A10)

N(EL - EL/)

Note that the summations in Eq. (A9) are for k=1 and
k'=1 only, because ¢,y is defined for i =j and i’ =,
and ay;; =0 for k</and i=.
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